Description: Partitional Clustering via Nonsmooth Optimization by Adil M. Bagirov, Napsu Karmitsa, Sona Taheri This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the eld and it is well suited for practitioners already familiar with the basics of optimization. Back Cover This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the Field and it is well suited for practitioners already familiar with the basics of optimization. Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms Author Biography Adil M. Bagirov is currently an Associate Professor at School of Science, Engineering and Information Technology, Federation University Australia, Ballarat, Australia. He received a master degree in Applied Mathematics from Baku State University, Azerbaijan in 1983, and the Candidate of Sciences degree in Mathematical Cybernetics from the Institute of Cybernetics of Azerbaijan National Academy of Sciences in 1989 and PhD degree in Optimization from Federation University Australia (formerly the University of Ballarat), Ballarat, Australia in 2002. He worked at the Space Research Institute (Baku, Azerbaijan), Baku State University (Baku, Azerbaijan), Joint Institute for Nuclear Research (Moscow, Russia). Dr. Bagirov is with Federation University Australia (Ballarat, Australia) since 1999. He currently holds the Associate Professor position at this university. He has won five Australian Research Council Discovery and Linkage grants to conduct research in nonsmooth and global optimization and their applications. He was awarded the Australian Research Council Postdoctoral Fellowship and the Australian Research Council Research Fellowship. His main research interests are in the area of nonsmooth and global optimization and their applications in data mining, regression analysis and water management. Dr. Bagirov has published a book on nonsmooth optimization, more than 150 journal papers, book chapters and papers in conference proceedings.Napsu Karmitsa has been a Docent (Associate Professor) of Applied Mathematics at the Department of Mathematics and Statistics at the University of Turku, Finland, since 2011. She obtained her MSc degree in Organic Chemistry in 1998 and PhD degree in Scientific Computing in 2004 both from the University of Jyväskylä, Finland. At the moment, she holds a position of Academy Research Fellow at the University of Turku. Her research is focused on nonsmooth optimization and analysis. Special emphasis is given tononconvex, global and large-scale cases. She is also studying theory of generalized pseudo and quasiconvexities for nonsmooth functions, developing numerical methods for solving nonsmooth, possible nonconvex and large-scale optimization problems and applying these method for solving data mining problems. Sona Taheri is currently a Research Fellow at the School of Science, Engineering & Information Technology, Federation University Australia. Dr. Taheri has been at this University since 2009. She received her PhD degree in Mathematics from Federation University Australia (formerly the University of Ballarat) in 2012. Underpinning this is her Master degree in Applied Mathematics and Bachelor of Science in Pure Mathematics through University of Tabriz Iran completed in 2004 and 2001, respectively. Her research interests lie in the areas of optimization, particularly nonsmooth nonconvex optimization, and their applications in data mining, in particular cluster analysis and regression analysis. Table of Contents Introduction.- Introduction to Clustering.- Clustering Algorithms.- Nonsmooth Optimization Models in Cluster Analysis.- Nonsmooth Optimization.- Optimization based Clustering Algorithms.- Implementation and Numerical Results.- Conclusion. Feature Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms Description for Sales People Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms Details ISBN3030378284 Author Sona Taheri Short Title Partitional Clustering Via Nonsmooth Optimization Pages 336 Series Unsupervised and Semi-Supervised Learning Language English Year 2021 ISBN-10 3030378284 ISBN-13 9783030378288 Format Paperback Publication Date 2021-02-25 Publisher Springer Nature Switzerland AG Edition 1st Imprint Springer Nature Switzerland AG Place of Publication Cham Country of Publication Switzerland UK Release Date 2021-02-25 Illustrations 77 Illustrations, color; 1 Illustrations, black and white; XX, 336 p. 78 illus., 77 illus. in color. Subtitle Clustering via Optimization Edition Description 1st ed. 2020 Alternative 9783030378257 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:137852009;
Price: 216.69 AUD
Location: Melbourne
End Time: 2024-11-05T17:00:01.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9783030378288
Book Title: Partitional Clustering via Nonsmooth Optimization
Number of Pages: 336 Pages
Language: English
Publication Name: Partitional Clustering Via Nonsmooth Optimization: Clustering Via Optimization
Publisher: Springer Nature Switzerland Ag
Publication Year: 2021
Subject: Mathematics
Item Height: 235 mm
Item Weight: 545 g
Type: Textbook
Author: Sona Taheri, Napsu Karmitsa, Adil M. Bagirov
Item Width: 155 mm
Format: Paperback